
Lecture #5: Generators, Comprehensions, and

More!

Presented by Jamal Bouajjaj

2023–10–02

For University of New Haven’s Fall 2023 CSCIxx51 Course

Copyright (C) 2023 Jamal Bouajjaj under GPLv3

Itterable

Python Iterable

An iterable is an object that can be iterated over, either manully or with

the for loop (and other methods like list compression).

For example, lists are iterable.

1/15

Iterable

On a technical level, an iterable must return an iterator object with

__iter__() or __getitem__()

2/15

Iterator

An iterator is an object with the __next__() method, which returns the

next item in the iterator.

An iterator raises the StopIteration exception when there is nothing next

if the next function is called to it.

3/15

Generators

Generators

An generator is an iterator that YOU can create. Every generator is an

iterator, but not every iterator is a generator.

See PEP 255 for more details.

4/15

Generator Function

To make a function an iterator, you need the yield keyword. It simply

returns a value when the function gets called, and ”resumes” when

next() is called on the iterator. Yield rememeber’s the function state

unlike return. This happens until the end of a function

To force exit (i.e raise a StopIteration exception), simply exit out of the

function.

from https://wiki.python.org/moin/Generators

def firstn(n):

num = 0

while num < n:

yield num

num += 1

5/15

Usage

A generator is useful if you know the objects will be sequentially grabbed,

and storing them all will be too much memory.

An example is a database query.

6/15

range?

Is range a generator or not?

NO, it isn’t (suprisinly). It’s actually it’s own type, and is considered a

sequence.

7/15

range?

Is range a generator or not?

NO, it isn’t (suprisinly). It’s actually it’s own type, and is considered a

sequence.

7/15

Comprehensions

List Comprehensions

You can generate a Python list in one line with the following format

[<expression> for item in list if <conditional>]

a = [i for i in range(5)]

a = [i*5 for i in range(5) if i != 2]

a = [i+5 for i in a]

8/15

Set Comprehensions

Sets also have compression!

a = {i for i in range(5)}

9/15

Dictionary Comprehensions

Same applies to a dictionary

a = {f"F{i:d}": i*5 for i in range(5)}

10/15

And More!

Useful Itterable Functions

The next slides will go over two useful itterable functions

11/15

map

map(function, iterable, *iterables)

Return an iterator that applies function to every item of iterable, yielding

the results. If additional iterables arguments are passed, function must

take that many arguments and is applied to the items from all iterables in

parallel. With multiple iterables, the iterator stops when the shortest

iterable is exhausted. For cases where the function inputs are already

arranged into argument tuples, see itertools.starmap().

12/15

map, example

def f(a):

return 2**a

b = map(f, range(10))

for i in b:

print(i)

13/15

zip

zip(*iterables, strict=False)

Iterate over several iterables in parallel, producing tuples with an item

from each one.

14/15

zip, example

for item in zip([1, 2, 3], ['sugar', 'spice', 'everything

nice']):↪→

print(item)

15/15

End

The end

15/15

	Itterable
	Python Iterable
	Iterable
	Iterator

	Generators
	Generators
	Generator Function
	Usage
	range?

	Comprehensions
	List Comprehensions
	Set Comprehensions
	Dictionary Comprehensions

	And More!
	Useful Itterable Functions
	map
	map, example
	zip
	zip, example
	End

