
Lecture #6: Everything’s an Object!

Presented by Jamal Bouajjaj

2023–10–02

For University of New Haven’s Fall 2023 CSCIxx51 Course

Copyright (C) 2023 Jamal Bouajjaj under GPLv3



Definitions

A namespace is the mapping from a name to an object, for example

a = 5, a is the namespace for the object that was just created.

1/19



Objects?



Objects!

On a core programming level, an object is a thing you can intract with.

Similar to C++

2/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances:

YES

• Functions: YES

• Lists: YES

• Strings: YES (trick question, same as list: sequences)

• Integers?: YES

• You???: wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions: YES

• Lists: YES

• Strings: YES (trick question, same as list: sequences)

• Integers?: YES

• You???: wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions:

YES

• Lists: YES

• Strings: YES (trick question, same as list: sequences)

• Integers?: YES

• You???: wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions: YES

• Lists: YES

• Strings: YES (trick question, same as list: sequences)

• Integers?: YES

• You???: wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions: YES

• Lists:

YES

• Strings: YES (trick question, same as list: sequences)

• Integers?: YES

• You???: wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions: YES

• Lists: YES

• Strings: YES (trick question, same as list: sequences)

• Integers?: YES

• You???: wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions: YES

• Lists: YES

• Strings:

YES (trick question, same as list: sequences)

• Integers?: YES

• You???: wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions: YES

• Lists: YES

• Strings: YES (trick question, same as list: sequences)

• Integers?: YES

• You???: wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions: YES

• Lists: YES

• Strings: YES (trick question, same as list: sequences)

• Integers?:

YES

• You???: wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions: YES

• Lists: YES

• Strings: YES (trick question, same as list: sequences)

• Integers?: YES

• You???: wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions: YES

• Lists: YES

• Strings: YES (trick question, same as list: sequences)

• Integers?: YES

• You???:

wat

3/19



POP QUIZ

POP QUIZ: Are the following an object?

• Class Instances: YES

• Functions: YES

• Lists: YES

• Strings: YES (trick question, same as list: sequences)

• Integers?: YES

• You???: wat

3/19



You PASS

That’s right, EVERYTHING in Python is an object and is treated as such.

4/19



Object Attributes

Each object can have attributes (or attribube references), which are

variables pertaining to the object. The attributes can be called with the

dot syntax:

object.attriube

5/19



Object Methods

Each object can have methods, which are functions inside the object.

object.method()

6/19



Wait...we’ve seen this before

Remember things "Hello!".endswith('1')? Well that is because

"Hello!" is a string object, and endswith() is a method of that object.

7/19



Classes



Definition

Classes is a building block to making your own objects.

To make your own class, we can define one like below as an example

class A:

b = 5

def test(self):

return "test good"

Where b is an attribute and test is a method of that class.

8/19



Class Instance

After declaration of your class, you can create instances of the class.

b = A() # instance

print(b.b)

b.test()

9/19



Variables

A class variables is one that is defined in the class, and is shared by all

classes

class Fruit:

is_fruit = True

orange = Fruit()

apple = Fruit()

print(orange.is_fruit)

print(apple.is_fruit)

10/19



Variables Caveat

There is a caveat when objects are not re-definable (i.e mutable)

class Fruit:

fruit_types = []

name = None

orange = Fruit()

apple = Fruit()

orange.name = "orange" # New object is created

orange.fruit_types.append('orange') # wait a minute...

print(apple.name) # ...

print(apple.fruit_types) # wat

We’ll get to how to fix this soon!

11/19



Instance Objects

In classes, you can have instance-specific objects refered to with self in

the class.

class Fruit:

def append_fruit(self, f_name):

if not hasattr(self, 'b'):

self.b = []

self.b.append(f_name)

orange = Fruit()

orange.append_fruit('orange')

apple = Fruit()

apple.append_fruit('apple')

orange.append_fruit('orange2')

print(apple.b)

12/19



Functions and Self

Each class function is automatically given one argument: self. This

refers to the object’s own instance.

You don’t pass in a self when you call the class instance’s function

Technically it’s just an argument, so it doesn’t have to be named self,

but that is convention.

13/19



Special Class Name

In Python, there are some class names that gets called automatically

depending on what is done to the object or around it, which are special

names.

The most popular one is __init__(), where it gets called when a class

object is initialized, and is useful to define some stuff

14/19



Init

class Fruit:

def __init__(self, name):

print("-> Initializing")

self.name = name

orange = Fruit('orange')

print(orange.name)

15/19



Fun ones

There are some fun ones, such as when objects get added:

class Fruit:

def __init__(self, name):

self.type = name

def __add__(self, other):

if hasattr(other, 'type'):

if other.type == 'orange' and self.type == 'apple':

return 'banana'

return None

apple = Fruit('apple')

orange = Fruit('orange')

print(apple + orange)

print(orange + apple)

16/19



No Privacy!

In Python there is not such thing as a ”private” variable as you would in

C++.

Convension is to have ”private” variables start with an underscore, and

hope nobody accesses it!

17/19



Well...Sort of

There is a not-known feature known as name mangling, where a method

with two leading underscores (but no more than 1 trailing one) like

__var will be replaced with _classname__var.

You can still access the _classname__var method.

So sort of useful I guess, but not really used though.

18/19



Subclassing

Classes can be sub-classes, which the sub-class will inherit all attribues

and methods. You can overide them, or re-call them with super()

class Fruit:

def buy(self):

print("Give Kromer")

def mix(self):

print("Mixing")

def eat(self):

print("Eating...yummy")

class Watermelon(Fruit):

def eat(self):

super().eat()

#Fruit.eat(self) # possible, don't use!

print("\tVery water-y")

def mix(self):

print("Not mixable")

w = Watermelon()

w.buy()

w.mix()

w.eat()

19/19



End

The end

19/19


	Definitions
	Objects?
	Objects!
	POP QUIZ
	You PASS
	Object Attributes
	Object Methods
	Wait...we've seen this before

	Classes
	Definition
	Class Instance
	Variables
	Variables Caveat
	Instance Objects
	Functions and Self
	Special Class Name
	Init
	Fun ones
	No Privacy!
	Well...Sort of
	Subclassing
	End


