
Lecture #8: with and Files

Presented by Jamal Bouajjaj

2023–10–02

For University of New Haven’s Fall 2023 CSCIxx51 Course

Copyright (C) 2023 Jamal Bouajjaj under GPLv3



with



with statement

The with statement is a special statement designed to wrap execution

with a block of a Context Manager.

So with will handle the context manager it’s given, and is guaranteed to

exit it properly no matter what.

1/13



with statement

This is the syntax of a with block. The as is optional:

with CONTEXT:

<-- stuff -->

with CONTEXT as f:

<-- stuff -->

2/13



Context Manager

A Context Manager is an object that defines how it’s resource is used

when the with block is entered and exited.

The context manager object must define two methods:

__enter__(self) and

__exit__(self, exc_type, exc_value, traceback).

the enter method executes when the with block is entered, and can

optionally return a variable for the block to use.

The exit method gets called when the with block is exited, no matter

what happens. The input arguments are optionally given by the with

function if there was an exception raised within the block.

3/13



example

class WithExampleClass:

def __enter__(self):

print("-> We are entering the object")

return "something"

def __exit__(self, exc_type, exc_value, traceback):

print("-> We are exiting the with block")

o = WithExampleClass()

with o as a:

print(f"we are in the with block with '{a}'")

#raise UserWarning("oh no a problem")

print("doing stuff")

4/13



Files



stream

Files can be though of, and are treated as, as stream of data. The stream

can be indexed.

Think of it as a river, where naturally you go down until it ends, but

magically can teleport where you are in the river.

5/13



open sesame

Files can be read with the

open(file, mode='r', buffering=-1, encoding=None,

errors=None, newline=None, closefd=True, opener=None)↪→

built in Python function. The primary arguments to be given is file and

mode: the file name and the opening mode.

Buffering is whether to buffer the file, and by how many bytes. 0 is for no

buffering, and -1 is for default buffer size.

The rest of the arguments arent’t as important, but do read up on it on

the docs.

6/13



mode

There are several mode to open the file with, some are mutually exlusive.

They are denoted by characters that are concatenated for the mode,

which are:

• ’r’ ← open for reading (default)

• ’w’ ← open for writting

• ’x’ ← open for exclusive creation

• ’a’ ← open for append writting if file exist

• ’b’ ← binary mode

• ’t’ ← text mode (default)

• ’+’ ← open for reading and writting (updating)

So ’rb’ is to open a file for read in binary mode for example.

7/13



open return

The object returned by open depends on the mode the file was opened

with, and the buffering argument. The following are the abstract base

classes for the class object that is returned:

• RawIOBase ← For stream of bytes

• BufferedIOBase ← For buffering on a RawIOBase

• TextIOBase ← For stream of bytes representing text.

They all inherit IOBase.

8/13



Basic Callbacks

Here are some basic functions of the classes above you should know

about:

• read(x) Reads the entire file, or x bytes if specified

• readline() Reads until a new line character, returning the line

• write(x) Writes x data into the file

• tell() Returns the current stream position

• seek(x) Sets the stream position to x

• close() Closes the I/O

If the current stream position is EOF (End-Of-File), then read returns an

empty string or byte.

Generally, it’s BAD to just call read() without any arguments, especially

for a large file.

9/13



Example

f = open('text.txt', 'r') # default, read-only as text

print(f.readline()) # read a single line

print(f.tell()) # where we are in the stream

f.seek(0) # go back to start of file

print(f.read(1)) # read a single char

print(f.read()) # read until EOL

f.close() # close file

10/13



Itterable

What if you want to read the file line by line in a for loop?

Thankfully, IOBase implements the __iter__() and __next__()

f = open('text.txt') # default, read-only as text

for line in f:

print("line read: ", line)

f.close() # close file

11/13



Itterable

What if you want to read the file line by line in a for loop?

Thankfully, IOBase implements the __iter__() and __next__()

f = open('text.txt') # default, read-only as text

for line in f:

print("line read: ", line)

f.close() # close file

11/13



Closing Files

For good practice, you must close the file when you are done with it.

This allows other programs to access the file.

But what if you are only accessing a file in a single block. Wouldn’t it be

nice if there was a block operation that automatically closed the file for

you?

12/13



with file

As it turns out, a IOBase does implement the __enter__() and

__exit__() callbacks!

with open('text.txt', 'r') as f:

for line in f:

print("line read: ", line)

13/13



End

The end

13/13


	with
	with statement
	with statement
	Context Manager
	example

	Files
	stream
	open sesame
	mode
	open return
	Basic Callbacks
	Example
	Itterable
	Closing Files
	with file
	End


