
Lecture #9: JSON and HTML

Presented by Jamal Bouajjaj

2023–10–02

For University of New Haven’s Fall 2023 CSCIxx51 Course

Copyright (C) 2023 Jamal Bouajjaj under GPLv3

JSON

JSON File

JSON is an open format designed for computer data interchange, but

also is human readable. It’s very populate on the Web to exchange data,

and Javascript easily eats it up.

JSON stores data in a key-value pair or arrays.

The full standard can be found in json.org, specified by RFC8259 and

ECMA-404.

1/21

JSON Example

Here is an example of a JSON file/data set:

{

"first_name": "John",

"last_name": "Smith",

"is_alive": true,

"age": 27,

"address": {

"street_address": "21 2nd Street",

"city": "New York",

"state": "NY",

"postal_code": "10021-3100"

},

"phone_numbers": [

{

"type": "home",

"number": "212 555-1234"

},

{

"type": "office",

"number": "646 555-4567"

}

],

"children": [

"Catherine",

"Thomas",

"Trevor"

],

"spouse": null

}

2/21

Wait...key value?

Wait a second, did you just say key-value pairs?

Isn’t that same same as a Python dictionary?

To that I say...YES! A JSON file can be easily imported and save from/to

a Python dictionary, making them quite easy to play with.

3/21

Wait...key value?

Wait a second, did you just say key-value pairs?

Isn’t that same same as a Python dictionary?

To that I say...YES! A JSON file can be easily imported and save from/to

a Python dictionary, making them quite easy to play with.

3/21

Wait...key value?

Wait a second, did you just say key-value pairs?

Isn’t that same same as a Python dictionary?

To that I say...YES! A JSON file can be easily imported and save from/to

a Python dictionary, making them quite easy to play with.

3/21

JSON Module

The Python standard library has a nice module called json that nicely

loads and saves JSON files.

4/21

JSON Module Example

See lecture9-json.py

5/21

HTTP

HTTP

HTTP is a an abstraction layer protocol (highest level on OSI level) for

distributed, collaborative, hypertext information systems1.

Hypertext is simply data that can refer to another data. For example, an

HTML document that refers to another CSS file for styling.

This protocol is what the World-Wide-Web is built upon.

HTTP is a request-response protocol with a client-server model. The

protocol is also stateless.2.

1RFC9110, https://datatracker.ietf.org/doc/html/rfc9110
2https://en.wikipedia.org/wiki/HTTP

6/21

https://datatracker.ietf.org/doc/html/rfc9110
https://en.wikipedia.org/wiki/HTTP

Request Methods

HTTP has many possible request methods a client can make.

HTTP has many request methods, but two are the most common:

• GET: Request an info from the server. This should have no other

effect other than getting the data.

• POST: Mostly for sending some information to a server, for

example to post something.

7/21

Return Code

Per transaction, the server returns a return code as a 3 digit number.

Here are what the 3rd digit of the code means, and some common

example

• 1xx: Information Response

• 2xx: Sucess

• 200: OK

• 3xx: Redirection

• 4xx: Client Error

• 404: Not Found

• 5xx: Server Error

8/21

HTTP Message

An HTTP message body has the following information3:

• Request Line (GET /logo.gif HTTP/1.1) or Status Line

(HTTP/1.1 200 OK)

• Headers

• Empty Line

• Message Body Data

3https://en.wikipedia.org/wiki/HTTP_message_body

9/21

https://en.wikipedia.org/wiki/HTTP_message_body

SECURITY

HTTP is NOT SECURE!!!!!!!!. DO NOT TRY and send sensitive data

across HTTP alone.I’ll be demonstrating this in Wireshark

If you want secure content, use HTTPS, which encrypts your data over

TLS. This is shown in your browser by the padlock icon, and almost all

websites have HTTPS implemented.

Side note: To all of the VPN ads that state they will ”encrypt your data to

prevent hackers”, this isn’t correct for the most part. Your data send to and

from the server is already encrypted with ”military grade encryption” (i.e AES)

10/21

SECURITY

HTTP is NOT SECURE!!!!!!!!. DO NOT TRY and send sensitive data

across HTTP alone.I’ll be demonstrating this in Wireshark

If you want secure content, use HTTPS, which encrypts your data over

TLS. This is shown in your browser by the padlock icon, and almost all

websites have HTTPS implemented.

Side note: To all of the VPN ads that state they will ”encrypt your data to

prevent hackers”, this isn’t correct for the most part. Your data send to and

from the server is already encrypted with ”military grade encryption” (i.e AES)

10/21

SECURITY

HTTP is NOT SECURE!!!!!!!!. DO NOT TRY and send sensitive data

across HTTP alone.I’ll be demonstrating this in Wireshark

If you want secure content, use HTTPS, which encrypts your data over

TLS. This is shown in your browser by the padlock icon, and almost all

websites have HTTPS implemented.

Side note: To all of the VPN ads that state they will ”encrypt your data to

prevent hackers”, this isn’t correct for the most part. Your data send to and

from the server is already encrypted with ”military grade encryption” (i.e AES)

10/21

HTTP example

Let’s try to get an HTTP request. I will be using the tool curl, which is

available on Linux, FreeBSD, and MacOS. On Windows you will have to

get it (good luck without a package manager!)

11/21

API

An API is simply an interface designed for computers to talk to each

other. It is simply a specification.

A Web API is an API that uses HTTP as the transfer protocol. It is the

most common usage of the term API.

The most popular type of return content type for an API is JSON or

XML.

JSON, so...YES, Python makes interfacing with web APIs and

parsing thru the data quite easily. XML too, but I don’t cover that today

as it’s the lesser popular.

12/21

API

An API is simply an interface designed for computers to talk to each

other. It is simply a specification.

A Web API is an API that uses HTTP as the transfer protocol. It is the

most common usage of the term API.

The most popular type of return content type for an API is JSON or

XML.JSON, so...

YES, Python makes interfacing with web APIs and

parsing thru the data quite easily. XML too, but I don’t cover that today

as it’s the lesser popular.

12/21

API

An API is simply an interface designed for computers to talk to each

other. It is simply a specification.

A Web API is an API that uses HTTP as the transfer protocol. It is the

most common usage of the term API.

The most popular type of return content type for an API is JSON or

XML.JSON, so...YES, Python makes interfacing with web APIs and

parsing thru the data quite easily. XML too, but I don’t cover that today

as it’s the lesser popular.

12/21

HTTP in Python

There are two main modules used to simplify requesting HTTP content

in Python:

• urllib.request (Standard Library)

• requests

Both handle re-directs for you (from a 301 status code for example).

They also handle HTTPS for you!

13/21

URL Lib Example

import urllib.request

with urllib.request.urlopen("https://semver.org") as u:

print("->", u.status)

print("->", u.reason)

print("->", u.url)

print("->", u.getheaders())

print("->", u.read())

14/21

GET with Data

url =

"https://api.weather.gov/gridpoints/OKX/65,67/forecast"↪→

u = urllib.request.urlopen(url)

print("->", u.status)

print("->", u.reason)

print("->", u.url)

print("->", u.getheaders())

print("->", u.read())

15/21

GET with Data

url = "https://opentdb.com/api.php"

data = {'amount': 10}

url = url + '?' + urllib.parse.urlencode(data)

u = urllib.request.urlopen(url)

print("->", u.status)

print("->", u.reason)

print("->", u.url)

print("->", u.getheaders())

print("->", u.read())

16/21

POST with Data

url = "https://reqres.in/api/users"

data = {'name': 'morpheus', 'job': 'leader'}

header = {'User-Agent' : 'Mozilla/5.0'} # due to it

rejecting otherwise↪→

data = urllib.parse.urlencode(data).encode()

url = urllib.request.Request(url, data, header)

u = urllib.request.urlopen(url)

print("->", u.status)

print("->", u.reason)

print("->", u.url)

print("->", u.getheaders())

#print("->", u.read())

data = json.load(u)

print(data)

17/21

requests

requests is an non-standard Python module (so must be installed) that

makes HTTP communication a little easier.

18/21

requests example

import requests

u = requests.get("https://semver.org")

print("->", u.status_code)

print("->", u.reason)

print("->", u.url)

print("->", u.headers)

print("->", u.text)

19/21

GET with Data

url = "https://opentdb.com/api.php"

data = {'amount': 10}

u = requests.get(url, data)

print("->", u.status_code)

print("->", u.reason)

print("->", u.url)

print("->", u.headers)

print("->", u.text)

print("->", u.json())

20/21

POST with Data

url = "https://reqres.in/api/users"

data = {'name': 'morpheus', 'job': 'leader'}

header = {'User-Agent' : 'Mozilla/5.0'} # due to it

rejecting otherwise↪→

u = requests.post(url, data, headers=header)

print("->", u.status_code)

print("->", u.reason)

print("->", u.url)

print("->", u.headers)

print("->", u.text)

print("->", u.json())

21/21

End

The end

21/21

	JSON
	JSON File
	JSON Example
	Wait...key value?
	JSON Module
	JSON Module Example

	HTTP
	HTTP
	Request Methods
	Return Code
	HTTP Message
	SECURITY
	HTTP example
	API
	HTTP in Python
	URL Lib Example
	GET with Data
	GET with Data
	POST with Data
	requests
	requests example
	GET with Data
	POST with Data
	End

