
Lecture #11: logging

Presented by Jamal Bouajjaj

2023–10–02

For University of New Haven’s Fall 2023 CSCIxx51 Course

Copyright (C) 2023 Jamal Bouajjaj under GPLv3

Logging Stuff

Let’s say you have a functional application. Cool!

Now what if during run-time an error happended? Wouldn’t you like to

know what occured? Both during debugging and deployment?

1/13

Logging Stuff

Let’s say you have a functional application. Cool!

Now what if during run-time an error happended? Wouldn’t you like to

know what occured? Both during debugging and deployment?

1/13

Naive Logging

The following is a simple way to ”log” stuff to the terminal. The simple

print statement.

a = some_function(5, 2)

print(f"a is {a}")

try:

do_something_else(a, 50)

except ValueError as e:

print("Exception here! ", e)

2/13

logging Module

While the above could be sufficient, there are a couple of

issues/downsides:

• If this is a CLI application, the user application will have print-outs

that aren’t relavent to what the user needs.

• There is no distunction between important errors and just debug

logs.

• What is printed does not get sent to a file, allowing loss of

information with no way of getting it.

• If a GUI application, there will be no console. Same as above

• Exception printing is limited

3/13

Solutions

Enough rambling, what is a viable solution?

• Force the user to open a command-line when running the

application, and requiring them to copy the output if there is an error

• Give up!

• Ignore any errors, they aren’t important.

• Use the logging module

4/13

Solutions

Enough rambling, what is a viable solution?

• Force the user to open a command-line when running the

application, and requiring them to copy the output if there is an error

• Give up!

• Ignore any errors, they aren’t important.

• Use the logging module

4/13

Solutions

Enough rambling, what is a viable solution?

• Force the user to open a command-line when running the

application, and requiring them to copy the output if there is an error

• Give up!

• Ignore any errors, they aren’t important.

• Use the logging module

4/13

Solutions

Enough rambling, what is a viable solution?

• Force the user to open a command-line when running the

application, and requiring them to copy the output if there is an error

• Give up!

• Ignore any errors, they aren’t important.

• Use the logging module

4/13

Solutions

Enough rambling, what is a viable solution?

• Force the user to open a command-line when running the

application, and requiring them to copy the output if there is an error

• Give up!

• Ignore any errors, they aren’t important.

• Use the logging module

4/13

logging

logging

logging is a standard module that is designed to handle logging stuff in

your application.

5/13

Logger

A Logger is an object that handles logging. There is always a root logger

(top level), and you can create a logging handler. Each logger can have

it’s own ”settings”, as in level and handlers.

Getting a logger with the same name will return the same logger.

A logger name is hierarchal, so root is the top level, then all other loggers

are child loggers. A dot indicates a child of the logger name.

l = logging.getLogger() # root logger

l = logging.getLogger('sensor') # a logger with name

l = logging.getLogger('sensor.ser') # a logger with

name, child of sensor↪→

6/13

Log Levels

There are several levels of log message withing the module1:

• NOSET (placeholder for nothing set, not a real level)

• DEBUG

• INFO

• WARNING

• ERROR

• CRITICAL

Any level less than the set level is ignored, either by the logger object

itself or a handler.

A logger object by default assumes a level of WARNING.

1https://docs.python.org/3/howto/logging.html

7/13

https://docs.python.org/3/howto/logging.html

Level Example

This is how to log with levels. The logger itself must have a level set

unless you want WARNING or above to be logged.

l = logging.getLogger() # root logger

l.setLevel(logging.DEBUG) # set logger level

l.debug("Message")

l.info("Message")

l.warning("Message")

l.error("Message")

l.critical("Message")

calls to logging (the module) directly will just log

with the root logger↪→

logging.debug("Message")

8/13

Exception Logging

You can also log exceptions, which will also record the traceback! The

level for exception logs is ERROR.

l = logging.getLogger() # root logger

try:

a = 5 / 0

except:

logging.exception("Error!")

9/13

Log Handlers

Once a log is emmited (i.e sent), where does it get sent? That is

determined by what handlers exist for the logger.

The handler just handles what to do with a log.

Each handler can have a level: anything below the set level is ignored for

the handler.

The handler is applied to a logger on a hierarchal basis. So a handler for

the root logger will get called for all child loggers, etc.

10/13

Log Handlers

l = logging.getLogger()

l.setLevel(logging.DEBUG) # set the logger's level

hs = logging.StreamHandler()

hs.setLevel(logging.WARNING)

l.addHandler(hs)

fs = logging.FileHandler("file.log")

hs.setLevel(logging.DEBUG)

l.addHandler(fs)

11/13

Log Format

You can change what each log handler formats it’s output. You can for

example have a log output the function name, time, message, etc.

l = logging.getLogger()

l.setLevel(logging.DEBUG) # set the logger's level

hs = logging.StreamHandler()

hs.setLevel(logging.WARNING)

f = logging.Formatter("%(asctime)s

%(levelname)s:%(filename)s:%(funcName)s:%(lineno)s

%(message)s")

↪→

↪→

hs.setFormatter(f)

l.addHandler(hs)

12/13

Logging Without Setup!

logging can have a decent amount of setup for it. If you just want

something to just log in the strem, and maybe file, you can have logging

setup a lot for you by using the following function:

logging.basicConfig(level=logging.DEBUG)

logging.basicConfig(level=logging.DEBUG,

filename="program.log")↪→

13/13

End

The end

13/13

	Logging Stuff
	Naive Logging
	logging Module
	Solutions
	logging
	logging
	Logger
	Log Levels
	Level Example
	Exception Logging
	Log Handlers
	Log Handlers
	Log Format
	Logging Without Setup!
	End

