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Misc

This lecture/presentation is for a collection of stuff that I either missed,

or stuff which is small to not warrant a whole class for them individually,

but enough for multiple of them
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Tuple ”Collapsing”



Tuple Collapsing

If you declare a tuple with one element, by default it will ignore your

parenthesis, making it into a not-tuple as parenthesis can also be used to

have order of operation.

To make a one-element tuple into one, add a comma after the first

element

print(type( (1) )) # int

print(type( (1,) )) # tuple
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Unpacking and Packing



List Unpacking

What if you have a Python list, where that list is actually input

arguments to a function. Can you pass all of them to the function?

YES, by unpacking the list. Unpacking just means to take the elements

of the sequence, and set them as arguments to a function. This is done

with a star *. For example:

def addThreeNumbers(a, b, c):

return a + b + c

# The following are equivalent

addThreeNumbers(1, 2, 3)

addThreeNumbers(*[1, 2, 3])
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Dict Unpacking

If done with a dictionary, then the keys become the variable identifier,

and the value is...well...the value of that identifier. Dictionary unpacking

is done with two stars **.

def addThreeNumbers(a, b, c):

return a + b + c

# The following are equivalent

addThreeNumbers(a=1, b=2, c=3)

addThreeNumbers(**{'a': 1, 'b': 2, 'c': 3})
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Function Packing

Now what if you need a function to take multiple user inputs, but have

the flexiblity to have any amount. You CAN have the user just enter a

list as an argument, but there is another way.

The same syntax for list unpacking sort of works backwards if it’s an

argument of a function: Take all of the keywords by the user, and pack

them into a list. The text args isn’t fixed, but it’s the standard

def addNumbers(*args):

return sum(args)

addNumbers(1, 2, 3)

addNumbers(1, 2, 3, 4, 5, 6, 7)
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Function Dict Packing

Same concept works for dictionaries. The standard text is kwargs

def addNumbers(**kwargs):

if 'a' in kwargs:

return 'A in args'

return 'no a in args'

addNumbers(a=2, b=1, fes=1)

addNumbers(hb=3, bc=1, bjh=2)
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Why not both?

def addNumbers(*args, **kwargs):

print(len(args))

if 'a' in kwargs:

return 'A in args'

return 'no a in args'

addNumbers(2, 4, 1)

addNumbers(2, 4, 1, a=2, b=1, fes=1)

addNumbers(hb=3, bc=1, bjh=2)
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Lambda



Lambda Function

A lambda function is constructor to make anonymous functions. What

lambda returns is a function that can be called.

An anonymous function (a general programming term) is a function

without a name.

A λ function has the following syntax:

lambda *VAR: SOMETHING

The function above takes arguments, and whatever that SOMETHING

does is what the lambda function returns.

8/23



Lambda Function

A lambda function is constructor to make anonymous functions. What

lambda returns is a function that can be called.

An anonymous function (a general programming term) is a function

without a name.

A λ function has the following syntax:

lambda *VAR: SOMETHING

The function above takes arguments, and whatever that SOMETHING

does is what the lambda function returns.

8/23



Example

def stripFunction(a):

return a.strip()

with open('file') as f:

r = map(stripFunction, f)

# OR

r = map(lambda x: x.strip(), f)
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Other use

Also useful for having a function that will execute later on with

arguments:

def ret(x):

print(x)

functions = []

for i in range(100):

#functions.append(ret(i)) # <- not good!

functions.append(lambda i=i: ret(i))

functions[0]() # a bit cursed...no?
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Block Documentation



Block

If you need multiline documentation, you need need individual #. OR,

you can just surround your comment in 3x”

"""

This is a block documentation

Anything in here is a comment

"""

"""Another valid block doc: don't have to be

multi-line"""↪→
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Reservations

With that said, the convention is to keep block documentation only for

function, class, or module docs. These are called docstrings

def your_function(a, b):

"""

This functoin returns if a > b

Args:

a: number

b: number

"""

return a > b

12/23



Formats

There are multiple docstring format conventions if you want to follow

them. They tend to include all of a function’s info like arguments, return

type, exceptions, etc. They can also be used to automatically generate a

documentation webpage.

See https://stackoverflow.com/questions/3898572/

what-are-the-most-common-python-docstring-formats for the

different formats.

PyCharm can handle all of them, and will auto-fill a docstring for a

function when you make one.
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Getting docstrings

You can also have Python return a docstring of a function or class by

calling __doc__:

import random

print(random.randint.__doc__)
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Type Hinting



Hinting

If you have a function as follows, let’s say it’s expecting a certain input

type

def really_cool_function(money):

if money < 50:

print("You broke")

else:

print("You not broke")

And this will fail if the type isn’t a float or integer. How do you convey it?
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Docs

You could have the block documentation state so

def really_cool_function(money):

"""

Really cool function

Args:

money (int): This is an integer!

"""

if money < 50:

print("You broke")

else:

print("You not broke")

But what if there was a BETTER way, one in which the IDE can also

understand and do static checking to that who uses this function?
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Hinting

Introducing type hinting! Now with this one small trick (colon), you can

have the user, IDE, and any static checker know what type your function

is expecting!

After a variable, you type colon with the type class it expects

def really_cool_function(money: int):

if money < 50:

print("You broke")

else:

print("You not broke")
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Hinting 2

Also works with optional variables, before the equate sign.

def really_cool_function2(money: int, areyoucool: bool =

False):↪→

if areyoucool:

print("You're cool anyways, who needs money!")

return

if money < 50:

print("You broke")

else:

print("You not broke")
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Global



Variable Scope

Variables have a ”scope” to them, i.e what part of code they encompass.

For example, a variable declared in a function has it’s scope withing the

function, and cannot be accessed externally:

def really_cool_function3():

money = 5

really_cool_function3()

print(money) # This will fail
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Variable Scope

But a function can access outside scope variables if it is not defined

def really_cool_function4():

print(cash)

cash = 50

really_cool_function4()
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Variable Scope

If function uses a local variable, even if later, then the global variable is

not used:

def really_cool_function4():

print(cash) # this will fail

cash = 10

cash = 50

really_cool_function4()
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Global

Unless you have a global keyword to have the scope of the variable be

outside of the function. This will also allow functions to change global

variables

def really_cool_function4():

global cash

print(cash)

cash = 10

print(cash)

cash = 50

print(cash)

really_cool_function4()

print(cash)
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Guidance

My advice: AVOID globals if possible.

They can lead to unexpected bugs, and aren’t a good design practice.

For larger/robust applications, each function should have a defined input

and output. If some variables needs to be kept in a state, use classes.
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End

The end
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