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Problem

Let’s say you have process that waits on something, for example a delay.

import time

def do_long_thing():

print("Doing a thing!")

time.sleep(1)

print("Done!")

print("Other thing")

do_long_thing()

print("Oh no, I am delayed!")
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Problem

Or what if we want multiple things done together ”at the same time”

import time

def do_long_thing(i):

print(f"Doing a thing for {i}")

time.sleep(1)

print("Done!")

print("Other thing")

for i in range(10):

do_long_thing(i)

print("Oh no, I am delayed!")
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threading



Solved!

Welcome to the threading module. This runs a function in a thread,

allowing async functions to run while your main application is running.

import threading

import time

def do_long_thing(i):

print(f"Doing a thing for {i}")

time.sleep(1)

print("Done!")

print("Other thing")

for i in range(10):

t = threading.Thread(target=do_long_thing, args=(i,

))↪→

t.start()

print("yay, not delayed!")
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Making one

To make a thread, we call Thread to make a Thread object. Target is

the function to run, and args are the arguments passed to the function

given as a tuple.

t = threading.Thread(target=TARGET, args=())

This will return a Thread object
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Class Methods

The following are the main methods to a thread object:

t.start() # starts the thread

t.is_alive() # gets a bool depending if the thread is

alive↪→

t.join() # waits until the thread function is

exited↪→
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Only Once

A Thread object can only be ran once:

t.start()

t.join()

t.start() # This will fail
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Actual Threads

When you think of a ”thread”, you are thinking it’s a seperate process

that uses another CPU core...right?

What if I told you that is NOT the case!

One could also say...

An imposter thread AMONG US! (sorry)
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Why?? GIL!



GIL

This because of the Python Global Intepreter Lock (GIL).

This internal mechanism ensures that the intepreter only executes one

bytecode at a time.

This means that threading is not actually multi-CPU threaded, so your

program will still run on one core.
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Communication

Let’s say you have a thread and GUI thread. How will you ensure nice

communication between the thread and GUI?

You can just have a shared variable, but that is not thread safe, and can

lead to race conditions.
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Locks



Lock Object

A lock object, when called, will ensure the same lock is not executed

elsewhere. It will hold the other process until the lock is released.

tl = threading.Lock()

tl.acquire() # Get the lock

tl.release() # Release it back

tl.locked() # Get if the lock is locked

with tl: # this will acquire and release for you!

something()
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Queue



Lock Object

If you want to send data back and forth, one useful thread-safe way to do

so is with a Queue. This is a seperate module: queue.

A Queue is a FIFO buffer that can have stuff put into it, and stuff

retreived from.

import queue

#q = queue.Queue(maxsize=0) # maxsize is optional, can

be set to limit size↪→

q = queue.Queue()

q.put(123)

print(q.qsize())

print(q.empty())

print(q.full()) # if Queue was given a size

print(q.get())

q.join() # Wait until all items have been grabbed.
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End

The end
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