
Lecture #13: Threading and Queue

Presented by Jamal Bouajjaj

2023–10–02

For University of New Haven’s Fall 2023 CSCIxx51 Course

Copyright (C) 2023 Jamal Bouajjaj under GPLv3



Problem

Let’s say you have process that waits on something, for example a delay.

import time

def do_long_thing():

print("Doing a thing!")

time.sleep(1)

print("Done!")

print("Other thing")

do_long_thing()

print("Oh no, I am delayed!")

1/11



Problem

Or what if we want multiple things done together ”at the same time”

import time

def do_long_thing(i):

print(f"Doing a thing for {i}")

time.sleep(1)

print("Done!")

print("Other thing")

for i in range(10):

do_long_thing(i)

print("Oh no, I am delayed!")

2/11



threading



Solved!

Welcome to the threading module. This runs a function in a thread,

allowing async functions to run while your main application is running.

import threading

import time

def do_long_thing(i):

print(f"Doing a thing for {i}")

time.sleep(1)

print("Done!")

print("Other thing")

for i in range(10):

t = threading.Thread(target=do_long_thing, args=(i,

))↪→

t.start()

print("yay, not delayed!")

3/11



Making one

To make a thread, we call Thread to make a Thread object. Target is

the function to run, and args are the arguments passed to the function

given as a tuple.

t = threading.Thread(target=TARGET, args=())

This will return a Thread object

4/11



Class Methods

The following are the main methods to a thread object:

t.start() # starts the thread

t.is_alive() # gets a bool depending if the thread is

alive↪→

t.join() # waits until the thread function is

exited↪→

5/11



Only Once

A Thread object can only be ran once:

t.start()

t.join()

t.start() # This will fail

6/11



Actual Threads

When you think of a ”thread”, you are thinking it’s a seperate process

that uses another CPU core...right?

What if I told you that is NOT the case!

One could also say...

An imposter thread AMONG US! (sorry)

7/11



Actual Threads

When you think of a ”thread”, you are thinking it’s a seperate process

that uses another CPU core...right?

What if I told you that is NOT the case!

One could also say...

An imposter thread AMONG US! (sorry)

7/11



Actual Threads

When you think of a ”thread”, you are thinking it’s a seperate process

that uses another CPU core...right?

What if I told you that is NOT the case!

One could also say...

An imposter thread AMONG US! (sorry)

7/11



Actual Threads

When you think of a ”thread”, you are thinking it’s a seperate process

that uses another CPU core...right?

What if I told you that is NOT the case!

One could also say...

An imposter thread

AMONG US! (sorry)

7/11



Actual Threads

When you think of a ”thread”, you are thinking it’s a seperate process

that uses another CPU core...right?

What if I told you that is NOT the case!

One could also say...

An imposter thread AMONG US! (sorry)

7/11



Why?? GIL!



GIL

This because of the Python Global Intepreter Lock (GIL).

This internal mechanism ensures that the intepreter only executes one

bytecode at a time.

This means that threading is not actually multi-CPU threaded, so your

program will still run on one core.

8/11



Communication

Let’s say you have a thread and GUI thread. How will you ensure nice

communication between the thread and GUI?

You can just have a shared variable, but that is not thread safe, and can

lead to race conditions.

9/11



Locks



Lock Object

A lock object, when called, will ensure the same lock is not executed

elsewhere. It will hold the other process until the lock is released.

tl = threading.Lock()

tl.acquire() # Get the lock

tl.release() # Release it back

tl.locked() # Get if the lock is locked

with tl: # this will acquire and release for you!

something()

10/11



Queue



Lock Object

If you want to send data back and forth, one useful thread-safe way to do

so is with a Queue. This is a seperate module: queue.

A Queue is a FIFO buffer that can have stuff put into it, and stuff

retreived from.

import queue

#q = queue.Queue(maxsize=0) # maxsize is optional, can

be set to limit size↪→

q = queue.Queue()

q.put(123)

print(q.qsize())

print(q.empty())

print(q.full()) # if Queue was given a size

print(q.get())

q.join() # Wait until all items have been grabbed.

11/11



End

The end

11/11


	Problem
	Problem
	threading
	Solved!
	Making one
	Class Methods
	Only Once
	Actual Threads

	Why?? GIL!
	GIL
	Communication

	Locks
	Lock Object

	Queue
	Lock Object
	End


