Lecture #13: Threading and Queue

Presented by Jamal Bouajjaj
2023-10-02

For University of New Haven's Fall 2023 CSCIxx51 Course

Copyright (C) 2023 Jamal Bouajjaj under GPLv3

e

Let’s say you have process that waits on something, for example a delay.

OF
()
time. sleep (1)
()
()
do_long_thing()
()

1/11

Or what if we want multiple things done together "at the same time"

(1) :
(it)
time.sleep (1)
()

()
i (10):
do_long_thing(i)

()

2/11

threading

Welcome to the threading module. This runs a function in a thread,
allowing async functions to run while your main application is running.

(1):
(i)
time. sleep (1)
()
()
i (10):
t = threading Thread(target-do_long_thing, args-=(i,
=))
t.start ()
()

3/11

To make a thread, we call Thread to make a Thread object. Target is
the function to run, and args are the arguments passed to the function

given as a tuple.

t = threading.Thread(target=TARGET, args=())

This will return a Thread object

4/11

Class Methods

The following are the main methods to a thread object:

t.start ()
t.is_alive()
t.join()

—

5/11

A Thread object can only be ran once:

t.start()
t.join()
t.start ()

6/11

Actual Threads

When you think of a "thread”, you are thinking it's a seperate process
that uses another CPU core...right?

7/11

Actual Threads

When you think of a "thread”, you are thinking it's a seperate process
that uses another CPU core...right?

What if | told you that is NOT the case!

7/11

Actual Threads

When you think of a "thread”, you are thinking it's a seperate process
that uses another CPU core...right?

What if | told you that is NOT the case!

One could also say...

7/11

Actual Threads

When you think of a "thread”, you are thinking it's a seperate process
that uses another CPU core...right?

What if | told you that is NOT the case!
One could also say...

An imposter thread

7/11

Actual Threads

When you think of a "thread”, you are thinking it's a seperate process
that uses another CPU core...right?

What if | told you that is NOT the case!
One could also say...

An imposter thread AMONG US! (sorry)

7/11

Why?? GIL!

This because of the Python Global Intepreter Lock (GIL).

This internal mechanism ensures that the intepreter only executes one
bytecode at a time.

This means that threading is not actually multi-CPU threaded, so your
program will still run on one core.

8/11

Communication

Let's say you have a thread and GUI thread. How will you ensure nice

communication between the thread and GUI?

You can just have a shared variable, but that is not thread safe, and can

lead to race conditions.

9/11

Locks

Lock Object

A lock object, when called, will ensure the same lock is not executed
elsewhere. It will hold the other process until the lock is released.

tl = threading Lock()
tl. acquire()
tl . release()
tl. locked()
Bl g
something ()

10/11

Queue

Lock Object

If you want to send data back and forth, one useful thread-safe way to do
so is with a Queue. This is a seperate module: queue.

A Queue is a FIFO buffer that can have stuff put into it, and stuff
retreived from.

q = queue.Queue()
q.put(123)
(q.gsize())
(q.empty())
(q.-full())
(q.get())
q.join()

11/11

End

The end

	Problem
	Problem
	threading
	Solved!
	Making one
	Class Methods
	Only Once
	Actual Threads

	Why?? GIL!
	GIL
	Communication

	Locks
	Lock Object

	Queue
	Lock Object
	End

